

D	og N	0. : .		 	the second
П	eg. :	168	n de Co		

Name:

III Semester B.Sc. Degree CBCSS (OBE) Reg./Sup./Imp.
Examination, November 2021
(2019 – 2020 Admission)
COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS
3C03 MAT-PH: Mathematics for Physics – III

Time: 3 Hours Max. Marks: 40

PART – A

Answer any four questions. Each question carries one mark.

- 1. Calculate $\iint_R \frac{\sin x}{x} dA$ where R is the triangle in the XY-plane bounded by X-axis, the line y = x and the line $x = \frac{\pi}{2}$.
- 2. Find a vector parallel to the line of intersection of the planes 3x 6y 2z = 15 and 2x + y 2z = 5.
- 3. The Laplace transform of t² is
- 4. What is fundamental period for a periodic function?
- 5. Evaluate $\int_0^1 \int_0^{1-x} \int_{x+z}^1 dy dz dx$.

PART - B

Answer any seven questions. Each question carries two marks.

- 6. Find the distance from (1, 1, 3) to the plane 3x + 2y + 6z = 6.
- 7. Find an equation for the tangent to the ellipse $\frac{x^2}{4} + y^2 = 2$ at the point (-2, 1).
- 8. What are the directions of zero change in $f(x, y) = \frac{1}{2}(x^2 + y^2)$ at (1, 1)?
- 9. If r is a differentiable vector function of t with constant length prove $r \cdot \frac{dr}{dt} = 0$.

K21U 1833

- 10. Find the average value of F(x, y, z) = xyz throughout the cubical region D bounded by the coordinate planes and the planes x = 2, y = 2, z = 2 in the first octant.
- 11. Find the Laplace transform of e^{-t}sin²t.
- 12. If $H(s) = \frac{1}{(s^2 + \omega^2)^2}$ find h(t).
- 13. Prove that the Fourier series of an odd function f(x) of period 2L is a Fourier Sine Series.
- 14. What is the orthogonality relations of the trigonometric system?
 - 15. Find the Principal Unit Normal Vector for the curve r(t) = cos2ti + sin2tj.

16. Find
$$\mathcal{L}(f(t))$$
 where $f(t) = \begin{cases} \cos\left(t - \frac{\pi}{3}\right) & \text{if } t > \frac{\pi}{3} \\ 0 & \text{otherwise} \end{cases}$.

Answer any four questions. Each question carries three marks.

- 17. Sketch the region R enclosed by the parabola $y = x^2$ and the line y = x + 2 and find area of this region.
- 18. Find the curvature of the circular helix $r(t) = a \cos ti + a \sin tj + btk : a, b \ge 0$ $a^2 + b^2 \ne 0$.
- 19. Solve y' y = t, y'(0) = 1, y(0) = 1 using Laplace mehtod.
- 20. Using convolution solve y'' + 3y' + 2y = r(t): with

$$y'(0) = y(0) = 0$$
 and $r(t) = \begin{cases} 1 & \text{if } 1 < t < 2 \\ 0 & \text{otherwise} \end{cases}$

- 21. Verify Fubini's theorem for $f(x, y) = 100 6x^2y$ for $0 \le x \le 2$ and $-1 \le y \le 1$.
- 22. Let f(x) be a function of period 2π such that $f(x) = \begin{cases} x, & 0 < x < \pi \\ \pi, & \pi < x < 2\pi \end{cases}$ Find the Fourier series for f(x) in this interval.
- 23. Find the volume of the solid region bounded above by the Paraboloid $z = 9 x^2 y^2$ and below by the unit circle in the xy-plane.

PART - D

Answer any two questions. Each question carries 5 marks.

24. Evaluate
$$\int_{0}^{4} \int_{\frac{y}{2}}^{\frac{y}{2}+1} \frac{2x-y}{2} dxdy \text{ by applying the transformation } u = \frac{2x-y}{2}, v = \frac{y}{2}.$$

- 25. Solve the Laguerre's differential equation ty'' + (1 t)y' + ny = 0 to identify the Laguerre polynomials. Also prove these polynomials are defined by Rodrigue's formula.
- 26. A sinusoidal voltage $E = \sin \omega t$, where t is time, is passed through a half-wave rectifier that clips the negative portion of the wave. Find the Fourier series of the resulting periodic function with period $\frac{2\pi}{\omega}$ and is given by $u(t) = \begin{cases} 0 & -L < t < 0 \\ E \sin \omega t & 0 < t < L \end{cases}$
- 27. Find each of the directional derivatives.
 - a) $D_u f(2, 0)$ where $f(x, y) = xe^{xy} + y$ and u is the unit vector in the direction of $\theta = \frac{2\pi}{3}$.
 - b) $D_{u}f(x, y, z)$ where $g(x, y, z) = x^{2}z + y^{3}z^{2} xyz$ in the direction of v = (-1, 0, 3).
 - c) In what direction does f and g change most rapidly and what are the rate of change in these directions.